Monday, August 31, 2015

Page 325

Problem 3

Problem. Evaluate $\ln 45$ using (a) a calculator and (b) numerical integration.
Solution. (a) The TI-83 reports that $\ln 0.8=-0.2231435513$.
(b) Let $Y_{1}=1 / X$. Graph the function and then integrate it from 1 to 0.8 (note the reverse order). The TI-83 reports a value of -0.2231436 .

Problem 5

Problem. Match the function $f(x)=\ln x+1$ with its graph.
Solution. The function matches (b). It is the basic graph of $y=\ln x$ raised up one unit.

Problem 7

Problem.
Match the function $f(x)=\ln (x-1)$ with its graph.
Solution. The function matches (a). It is the basic graph of $y=\ln x$ shifted right one unit.

Problem 9

Problem. Sketch the graph of $f(x)=3 \ln x$ and state its domain.
Solution. The graph of $f(x)=3 \ln x$ is the basic graph of $y=\ln x$ stretched vertically by a factor of 3 . Its domain is the same as the domain of $\ln x$, namely, $(0, \infty)$.

Problem 12

Problem. Sketch the graph of $f(x)=\ln |x|$ and state its domain.
Solution. The graph is in two parts. To the right of the y-axis, the graph is the same as the graph of $y=\ln x$. To the left of the y-axis, the graph is the mirror image of the graph on the right. The domain is all real numbers except 0 .

Problem 18

Problem. Use the properties of logarithms to approximate the following logarithms, given that $\ln 2 \approx 0.6931$ and $\ln 3 \approx 1.0986$.
(a) $\ln 0.25$
(b) $\ln 24$
(c) $\ln \sqrt[3]{12}$
(d) $\ln \frac{1}{72}$

Solution. (a) $\ln 0.25=\ln \frac{1}{4}=-\ln 4=-\ln 2^{2}=-2 \ln 2 \approx-2(0.6931)=-1.3862$.
(b) $\ln 24=\ln \left(2^{3} \cdot 3\right)=3 \ln 2+\ln 3 \approx 3(0.6931)+(1.0986)=3.1779$.
(c) $\ln \sqrt[3]{12}=\ln 12^{1 / 3}=\frac{1}{3} \ln \left(2^{2} \cdot 3\right)=\frac{1}{3}(2 \ln 2+\ln 3) \approx \frac{1}{3}(2(0.6931)+1.0986)=$ 0.8283 .
(d) $\ln \frac{1}{72}=-\ln 72=\ln \left(2^{3} \cdot 3^{2}\right)=-(3 \ln 2+2 \ln 3)=-(3(0.6931)+2(1.0986))=$ -4.2765 .

Problem 21

Problem. Use the properties of logarithms to expand the logarithmic expression $\ln \frac{x y}{z}$. Solution.

$$
\begin{aligned}
\ln \frac{x y}{z} & =\ln x y-\ln z \\
& =\ln x+\ln y-\ln z
\end{aligned}
$$

Problem 26

Problem. Use the properties of logarithms to expand the logarithmic expression $\ln 3 e^{2}$.
Solution.

$$
\begin{aligned}
\ln 3 e^{2} & =\ln 3+2 \ln e \\
& =\ln 3+2(1) \\
& =2+\ln 3 .
\end{aligned}
$$

Problem 29

Problem. Use the properties of logarithms to write

$$
\ln (x-2)-\ln (x+2)
$$

as a logarithm of a single quantity.
Solution.

$$
\ln (x-2)-\ln (x+2)=\ln \frac{x-2}{x+2} .
$$

Problem 31

Problem. Use the properties of logarithms to write

$$
\frac{1}{2}\left[2 \ln (x+3)+\ln x-\ln \left(x^{2}-1\right)\right]
$$

as a logarithm of a single quantity.
Solution.

$$
\begin{aligned}
\frac{1}{2}\left[2 \ln (x+3)+\ln x-\ln \left(x^{2}-1\right)\right] & =\frac{1}{2} \ln \frac{(x+3) x}{x^{2}-1} \\
& =\ln \sqrt{\frac{(x+3) x}{x^{2}-1}}
\end{aligned}
$$

